Accelerator Physics Experiments for Future Hadron Colliders

EXPERIMENTS IN RHIC (summer 2000 ??):

Beam Growth Studies with Primary and Bent Crystal Collimators

- Introduction
- Previous Experience
- Predictions for the Intrabeam Scattering
- Bent Crystal Channeling
- Experimental Set-Up

Introduction:

- Motivation for the experiment:
 - Show that intrabeam scattering is a dominant effect on the beam life time and on the emittance growth in RHIC $_{197}$ Au $^{79+}$ (important also in the future LARGE Hadron colliders).
 - Experimentally find out the exact scale of the problem. Why?
 - Find the optimum mode for operation!
 - Plan a correct way for the luminosity upgradeRD projects what kind?
 - Connect the experiment with luminosity optimization and Background reduction.
 - Use the impact parameter measurements to show the way of beam growth:
 - First by using the Primary Collimator jaws
 - Second with the CRYSTAL collimation.

Previous Experience:

- Major "rules":
 - Measure a signal downstream of the collimation point without reducing the luminosity
 - Fit a response curve to the predicted beam growth (Intrabeam scattering?, Diffusion?)
- SPS measurements (LHC note 117):
 - Measurements of the transverse difusion speed and the impact parameter-b
- Difusion and 778 experiments in the Tevatron
- HERA measurements (Bruning et al.)

Intra Beam Scattering Predictions:

- INTRA-BEAM multiple Coulomb scattering has cross section:
- Particles in the bunch exchange longitudinal and transverse momenta by **Coulomb scattering**
- D.C background, beam halo, or trapped particles in the empty buckets, could be created by the escaped particles from the RF bucket (initial bucket area of ~0.3 $eVs/u \rightarrow \sim 1.3 eVs/u$).
- COMPARISONS BETWEEN **EXPERIMENTAL STUDIES with** THEORY show a factor of two overestimate by theory.
- •Beam Growth at >> :
 - 1/ $_{x}$ d $_{x}$ /dt = \mathbb{Z}^{4} N \mathbb{C}_{o} /(\mathbb{A}^{2} $_{x}$ $_{y}$ S $_{t}$) d/ n_{c} -1 ~ \mathbb{Z}^{4} N /(\mathbb{A}^{2} $_{x}$ $_{y}$ S)

Measurement of the impact parameter b:

- Measurements of the impact parameter b by using the edge of the primary collimator or:
- Using a bent Si crystal (L=5 mm) (Valery Biryukov Phys. Rev. E 52 (1995) 2045).
 One looks at the efficiency F dependence on t (thickness of the septum x'L):
 - Accuracy b = x' $L = 1 \mu rad 5 mm = 5 nm!$ If we plot F(x') - F(-x') as a function of t beam distribution over the impact parameter b at crystal (BPM resolution 0.1 mm).
 - = 0, t = x'L (x'>0), t = x'L (x'<0)

Why Bent Crystal Collimation?

- The Lindhard Critical angle significantly larger (8.9 times 79 1/2):
 - $_{c}$ =2[$Z_{1}Z_{2}$ e^{2}/d p]^{1/2}, where d is the crystal lattice parameter, p momentum, is the speed.
- Shorter Crystal (5 mm instead of 4 cm) improves efficiency and reduces the nuclear scattering beam loss
- Smaller bending angle (0.5 mrad) reduces angle problems (4-5 mrad previously)

